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ABSTRACT

Species distribution models (SDMs) are used to inform a range of ecological,
biogeographical and conservation applications. However, users often underesti-
mate the strong links between data type, model output and suitability for end-use.
We synthesize current knowledge and provide a simple framework that summarizes
how interactions between data type and the sampling process (i.e. imperfect detec-
tion and sampling bias) determine the quantity that is estimated by a SDM. We then
draw upon the published literature and simulations to illustrate and evaluate the
information needs of the most common ecological, biogeographical and conserva-
tion applications of SDM outputs. We find that, while predictions of models fitted
to the most commonly available observational data (presence records) suffice for
some applications, others require estimates of occurrence probabilities, which are
unattainable without reliable absence records. Our literature review and simula-
tions reveal that, while converting continuous SDM outputs into categories of
assumed presence or absence is common practice, it is seldom clearly justified by
the application’s objective and it usually degrades inference. Matching SDMs to the
needs of particular applications is critical to avoid poor scientific inference and
management outcomes. This paper aims to help modellers and users assess whether
their intended SDM outputs are indeed fit for purpose.
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INTRODUCTION

Models play a critical role in conservation decision-making and

ecological or biogeographical inference, but can lead to subop-

timal conservation outcomes and misguided theory if the

underlying data do not suit the intended application. Building

models with unsuitable data can waste valuable resources and

deliver outputs that do not solve the problem at hand.

Species distribution models (SDMs) have become a funda-

mental tool in ecology, biogeography, biodiversity conservation

and natural resource management (Guisan & Thuiller, 2005;

Newbold, 2010; Franklin, 2013; Guisan et al., 2013). SDMs typi-

cally correlate the presence (or presence/absence) of species at

multiple locations with relevant environmental covariates to

estimate habitat preferences or predict distributions; these

outputs are commonly used to inform ecological and biogeo-

graphical theory as well as conservation decisions (e.g. Akcakaya

et al., 1995; Pearce & Lindenmayer, 1998; Ferrier et al., 2002;

Bekessy et al., 2009; Keith et al., 2014). A review of current use

(see Appendix S1 in Supporting Information) reveals that SDMs

are applied broadly, including for the management of threat-

ened species (16% of papers), to control threatening processes

(8%), to predict impacts of climate change (13%), to under-

stand phylogeographic patterns (9%) and to manage landscapes

(8%) and biological invasions (7%). A variety of diverse mod-

elling algorithms are used (34 methods in 100 randomly selected

papers).

SDMs can also be built with different types of species data,

and these fundamentally affect the meaning of the quantity that

is estimated. SDMs are therefore particularly prone to problems

arising from a mismatch between data type and intended

purpose. For example, some SDM applications require that the

bs_bs_banner

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2015) 24, 276–292

DOI: 10.1111/geb.12268
276 © 2015 John Wiley & Sons Ltd http://wileyonlinelibrary.com/journal/geb



probability of a species occurring at a site (e.g. Hauser &

McCarthy, 2009) or the total area occupied (e.g. Keith et al.,

2008) be known. Other applications only require knowledge

about relative site suitability so that the best (or worst) sites can

be identified (e.g. Moilanen et al., 2005). Although recent

studies have mentioned such variation in required information

(e.g. Lawson et al., 2014), a comprehensive evaluation of how

different sampling processes, data types and modelling

approaches influence the utility of SDMs across applications is

lacking. Here, we aim to raise awareness of this often disre-

garded, but critical, issue.

We distinguish three types of data that are typically used in

correlative SDMs, which we label as presence-background,

presence–absence and occupancy-detection (hereafter PB, PA and

DET, respectively). With PB data (used in 53% of reviewed

papers), only presence records (a non-exhaustive sample of all

true presences) and environmental information are available.

These types of data are often referred to as presence-only data,

but we avoid this term, as discussed below. Many methods exist

for modelling species distributions based on PB data, including

the widely used Maxent (Phillips & Dudík, 2008; used in 41% of

papers), various implementations of regression methods (e.g.

Elith et al., 2006) and the broader class of spatial point-process

models (PPMs) which have received recent attention (Warton &

Shepherd, 2010; Renner & Warton, 2013). For simplicity here we

will discuss the data first with reference to sites (since this is how

ecologists often think about data) and later clarify how this links

with data structures for PPMs.

PB methods estimate habitat preferences by comparing the

environmental characteristics at sites where the species has been

recorded (P) with those throughout the region modelled, which

we refer to as the ‘background’ (B). In contrast, PA data (47% of

papers) provide information on whether a species was detected

or not detected at a set of sampling sites. Logistic regression is

commonly used to analyse PA data, but so are other statistical

and machine learning techniques (e.g. see the review in Elith &

Franklin, 2013). PA methods estimate the probability of observ-

ing a species at a site by comparing the environmental charac-

teristics at sites where the species was detected with those at sites

where it was not.

DET data (5% of papers) also consist of detection and non-

detection records, but these are collected in such a way that the

detection (or observation) process can be explicitly modelled

within the SDM (Lahoz-Monfort et al., 2014). For instance,

sampling may involve collecting data from repeat visits to sur-

veyed sites (MacKenzie et al., 2002; Stauffer et al., 2002; Tyre

et al., 2003) or recording times to detection during a single visit

(Garrard et al., 2008; Guillera-Arroita et al., 2011). This pro-

vides information about the probability of detecting the species

given that it is present at a site, and how that probability may

vary from site to site or visit to visit (e.g. Wintle et al., 2005b),

allowing models to account for imperfect detection in the esti-

mation of species occupancy probability.

As noted above, PB data are also sometimes referred to as

presence-only data, but here we avoid this term to prevent con-

fusion with true presence-only methods (PO; used in 11% of

papers) (e.g. climatic envelopes like BIOCLIM; Busby, 1991;

Booth et al., 2014) which utilize information about sites where

the species was detected without considering the environmental

conditions in the rest of the landscape. We have chosen not to

discuss PO methods here because they do not discriminate

between environmental suitability and landscape characteristics

(i.e. availability; Elith et al., 2011). We note that using PO data

limits SDMs by at least the same degree as working with PB data.

Using PO methods does not solve issues related to working with

PB methods; hence the issues we highlight regarding the limita-

tions of SDMs fitted to PB data also apply to PO approaches.

For a given species, the probability of a site being recorded as

a detection in a dataset is determined by three probabilities: the

probability that the species occupies the site, the probability that

the site is sampled and the probability that the species is detected

given it is present at the site (Yackulic et al., 2013). The first of

these, the probability of occupancy, is the most common object

of inference in a SDM. The second, the probability of a site being

surveyed, can be affected by sampling bias (e.g. when surveys are

only conducted near populated areas or reserves), whereas the

third, detectability, may vary with environmental variables. As

we explain later, our ability to deal with these three probabilities

depends critically on the type of data that are used to build

SDMs, and this in turn determines what SDMs can estimate.

DET are the richest type of data in terms of information

content, followed by PA and finally PB. However, this ordering is

reversed when we consider data availability, and quite often PB

are the only type of data that can be obtained (e.g. records from

museum or herbarium specimens; Newbold, 2010). Approxi-

mately half of recently published papers involving SDMs rely on

PB data (Appendix S1). Hence it is crucial to understand

whether, given the available data, the output of a proposed SDM

will be appropriate for the intended application.

The suitability of a SDM for a given application also relies

critically on how the raw output from the SDM is used. Our

review (Appendix S1) revealed that 54% of recent papers con-

verted the continuous output produced by SDMs into binary

(discretized) predictions of ‘presence/absence’ or ‘habitat/non-

habitat’. There appears to be a belief that this step is required by

many ecological, biogeographical or conservation applications

(e.g. Jiménez-Valverde & Lobo, 2007; Li & Guo, 2013; Liu et al.,

2013). However, attention is rarely paid to whether a binary

output is indeed required, or whether this may lead to an unnec-

essary loss of information and hence be detrimental in the

context of the intended application (but see Merow et al., 2013;

Calabrese et al., 2014; Lawson et al., 2014). Given the prevalence

of binary conversion of predictions and the paucity of critical

appraisal of this issue in the literature, we explore the need for

and potential impacts of discretizing SDM outputs in the

context of specific ecological, biogeographical and conservation

applications.

In summary, despite being an essential consideration in mod-

elling, confusion remains about the limitations of different types

of data for building SDMs and about the uses various outputs

can justifiably support. This confusion results in insufficient

evaluation of whether SDM outputs are appropriate for

Matching distribution models to applications
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proposed applications; a failing we aim to redress here. Our

specific aims are twofold. First, we clarify and synthesize current

knowledge regarding the inherent properties and limitations of

correlative SDMs with respect to the type of data that are used to

build them. To do this, we provide a framework that clarifies

how the interaction between the sampling process and the type

of species data determines the quantity that is ultimately esti-

mated from a SDM. Our second aim is to evaluate the informa-

tion needs of a range of ecological, biogeographical and

conservation applications that typically use SDMs as inputs,

including whether the conversion of continuous SDM outputs

into binary predictions is necessary or appropriate. Our paper

provides modellers and managers with a means to assess

whether the species data that they have available or are planning

to collect are appropriate for their intended use. Since the focus

of this paper is to identify how types of species data limit the

uses of SDMs, we assume that other relevant aspects of the

model-building process are well covered. These include having

access to a dataset that is sufficiently large and appropriately

collected, that all the relevant environmental covariates are con-

sidered and that modelling techniques and associated software

programs are correctly used. Apart from particular biases

induced by certain data types, we do not consider these issues

further.

THE INTERPLAY BETWEEN DATA TYPES AND
BIASES IN SDMS

There are three fundamental issues to consider with respect to

the type of species data used to build a SDM: (1) whether preva-

lence (the proportion of sites occupied) can be estimated; (2)

the impact of imperfect detection; and (3) the impact of envi-

ronmental sampling bias (Fig. 1a). These factors, discussed in

more detail below, dictate the types of application that a SDM

can reliably support given that they determine whether the

resulting model estimates: (1) the probability of species occur-

rence, (2) a relative likelihood of species occurrence (which is

proportional to the actual probability), (3) a correct ranking of

the sites in terms of occurrence probability; or (4) whether it

provides a biased estimation of species occurrence in which not

even the correct ranking of sites in terms of true occurrence

probability is achieved.

In ecology, biogeography and conservation most users want

to know the probability that a species occupies a given environ-

ment, which when mapped represents an estimate of its geo-

graphic distribution. This might be substantially different from

where the species is most likely to be observed, which is what the

least informative models estimate (Fig. 1a, column 1). Column 2

(yellow in Fig. 1a) represents models that correctly rank the

suitability of locations for the species, although the predicted

suitability is not proportional to the actual probability of occur-

rence (Fig. 1b). Models in columns 3 and 4 naturally provide

such a ranking as well, but importantly also capture the shape of

the environmental relationships explaining species occurrence

probability, either directly or with a constant scaling.

SDMs that achieve any of the three top information content

categories (columns 2–4) have good discrimination abilities (i.e.

they distinguish between occupied and unoccupied sites better

than random; Pearce & Ferrier, 2000; Phillips et al., 2006).

However, only those that estimate probabilities can achieve good

calibration (i.e. agreement between predicted probabilities and

observed proportions of sites occupied; Pearce & Ferrier, 2000).

Some of these categories of information content can be attained

with different data types, given particular conditions of sam-

pling bias and imperfect detection (Fig. 1), as discussed below.

What ultimately matters from the point of view of applications

is whether a SDM estimates the quantity required for a given

use, be that a probability of occurrence, a relative likelihood or a

correct ranking of sites. Our diagram in Fig. 1(a) distinguishes

between the information requirements of a particular applica-

tion and the type of species data (PB, PA or DET) used to

construct the SDM. Such decoupling allows evaluation of the

requirements of different applications without repeated refer-

ence to data types or specific issues like bias or imperfect detec-

tion: the key is to identify the minimum information required

for a given use.

Although for simplicity we present our categorization and

discussion only from the point of view of estimating probabil-

ities of species occurrence at sites, we note that the issues we

cover apply equally well to cases where the focus of estimation

is the intensity of points (observations) in the landscape. This

is the quantity estimated by PPMs (Warton & Shepherd, 2010;

Renner & Warton, 2013), which are not intrinsically based on

dividing space into discrete sites and allow probabilities to be

derived at any spatial resolution if needed. Regardless of

whether intensities or probabilities are obtained, PPMs for PB

data present the same limitations as other PB methods in

terms of their ability to estimate prevalence (and hence

absolute intensities/probabilities of occurrence) and are

similarly affected by issues of sampling bias and imperfect

detection.

Estimation of prevalence

PB methods do not estimate actual probabilities, but relative

likelihoods of species occurrence (or observation). From a set of

presence records alone (PB data) it is not possible to distinguish

whether a species is rare and well surveyed or common but

under-surveyed. Distinguishing between these two possibilities

requires PA or DET data. Despite being openly acknowledged by

developers of PB methods (e.g. Ferrier & Watson, 1997; Elith

et al., 2006) this limitation is not always fully appreciated. Con-

fusion remains among users, as indicated for instance by fre-

quent assumptions that the output of Maxent is a probability of

occurrence (a fact reported, e.g., by Yackulic et al., 2013 and

Guillera-Arroita et al., 2014c).

Some authors note that, under certain strong conditions,

prevalence can be estimated (identified) from PB data

(Lancaster & Imbens, 1996; Lele & Keim, 2006; Royle et al.,

2012). However, these conditions involve very specific restric-

tions about how species occurrence varies with explanatory

G. Guillera-Arroita et al.
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variables. Whether prevalence can be identified largely relies on

the true relationship conforming exactly to an assumed para-

metric form, which is highly unlikely to occur in reality (Hastie

& Fithian, 2013; Phillips & Elith, 2013). Mild departures from

the assumed functional form can cause profound errors

(Fig. S2.1 in Appendix S2), and even if the assumption is per-

fectly met estimates remain very imprecise (Merow & Silander,

2014). Hence, for practical purposes it can be argued that

Figure 1 (a) Synthesis of how the type of survey data interacts with sampling bias and imperfect detection to determine what a correlative
species distribution model can estimate. Dark arrows denote the default level of information that can be achieved with each type of survey
data (PA, presence–absence; PB, presence-background; DET, occupancy-detection). Light arrows indicate under which conditions higher
levels of information can be achieved from those data types. ψ denotes the probability of species occurrence at a site, and p* the probability
of detecting the species at a site where present (given all the survey effort applied per site). Column 1 refers to the probability/likelihood of
observing the species. Columns 2–4 refer to information about species occurrence (i.e. distribution). What we represent for convenience as
distinct quantities (columns) correspond in practice to a gradation (e.g. a bias may be negligibly small). (b) Graphical example of the
different levels of information represented by each column in panel (a), assuming a single environmental covariate for simplicity. Taking the
probability of occurrence in (4) as a reference, the relative likelihood of occurrence (3) is proportional to it, while (2) is not proportional
but would rank sites in the same order. The relative likelihood or probability of observation (1) may not even provide a good ranking in
terms of occurrence. Although for simplicity we present this figure from the point of view of the estimation of probabilities of species
occurrence at sites, the general ideas also apply when the focus of estimation is the intensity of points (observations) in the landscape
(i.e. from point-process models). Only the terminology is slightly different; for instance, instead of probability or relative likelihood of
occurrence, we would refer to absolute/relative intensity of species occurrence.

Matching distribution models to applications
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prevalence is not obtainable from PB data (Hastie & Fithian,

2013; Lele et al., 2013; Phillips & Elith, 2013).

Imperfect detection

It is widely recognized that surveys often fail to detect the

species present at a site (Yoccoz et al., 2001; Kéry, 2002), even

for sessile species such as plants (Garrard et al., 2008; Chen

et al., 2013). If detection is imperfect and this is not accounted

for, occupancy and detection processes are confounded and

SDMs might estimate where the species is more likely to be

observed rather than where it does occur (Gu & Swihart, 2004;

Kéry, 2011; Lahoz-Monfort et al., 2014). Estimated distribu-

tions can be substantially different depending on whether

detectability is accounted for or not (e.g. Kéry et al., 2010;

Kéry et al., 2013).

The impact of ignoring imperfect detection is greatest when

detectability is a function of environmental variables, because

this distorts our understanding of even the general shape of the

environmental relationships explaining the distribution of the

species (see figures 1 and 2 in Lahoz-Monfort et al. 2014).

Despite some past confusion in the literature, it is now clearly

established that imperfect detection will affect both PA and PB

methods in this situation (Elith et al., 2011; Dorazio, 2012;

Yackulic et al., 2013; Lahoz-Monfort et al., 2014), i.e. using only

presence records does not circumvent the problem of imperfect

detection. In the case of PA data, imperfect detection can lead to

false absence records, while the effect on PB methods stems from

the fact that presence records do not provide a random sample

of locations in which the species is actually present. Although

not always recognized, imperfect detection is also an issue when

detection and occurrence depend on different and uncorrelated

covariates. Bias can still be induced in the estimation of the

species distribution as the modelling process can mistakenly

identify detection covariates as relevant predictors of occurrence

probability (Lahoz-Monfort et al., 2014).

Acknowledging that detection can be imperfect implies

accepting that PA and PB methods might provide a biased esti-

mation of species distributions (column 1 in Fig. 1a). It is only

under particular conditions that a more meaningful output can

be obtained. If detectability is constant across sites (and there is

no sampling bias), PB methods can reliably estimate the relative

likelihood of species occurrence despite imperfect detection

(column 3). Constant detectability might occur if the same

observer carried out all surveys under similar conditions and in

comparable habitats. The relative likelihood of species occur-

rence is the maximum amount of information that a PB method

can yield, even when detection is perfect. Likewise, when PA data

are available and detection is imperfect but constant, SDMs can

estimate only a relative likelihood of species occurrence (column

3). However, with PA data there is also the potential to obtain an

unbiased estimation of occurrence probabilities when detection

is perfect (column 4). When detectability depends on environ-

mental covariates in the same way that species occurrence does

(i.e. occupancy and detectability are positively correlated), the

general shape of the estimated environmental relationship may

be affected but the correct ranking of the suitability of sites is

maintained (column 2).

When appropriate data are available (i.e. DET data), models

that estimate species occupancy while accounting for

detectability separate detection from occurrence (MacKenzie

et al., 2002; Stauffer et al., 2002; Tyre et al., 2003;

Guillera-Arroita et al., 2011, 2014b), enabling unbiased estima-

tion of occupancy probabilities even if detectability varies (pro-

vided the detection process is well characterized in the model).

The lower the detectability of a species, the more data are

required to precisely estimate its distribution (MacKenzie &

Royle, 2005; Guillera-Arroita & Lahoz-Monfort, 2012).

Sampling bias

PB methods work under the assumption that sampling is unbi-

ased (Phillips et al., 2009; Elith et al., 2011). However, PB data

seldom arise from random sampling and are often collected in

an opportunistic and spatially biased manner. Common exam-

ples include datasets derived from herbaria and museum speci-

mens (Newbold, 2010). In such datasets, sampling is often

biased towards accessible locations near roads or towns. The

problem for modelling species distributions is not the spatial

bias in itself but a bias in how the available environmental con-

ditions are sampled. For example, areas close to cities may tend

to be at lower elevations and have higher soil fertility. In PB

SDMs, sampling bias causes biased estimation of environmental

relationships, with suitability being over-estimated for environ-

ments that have been sampled more intensively and under-

estimated for those surveyed less frequently. Some methods have

been proposed to mitigate the problem of sampling bias in PB

SDMs. However, none of these can completely resolve the

problem as they rely on indirectly inferring the sampling process

(e.g. by considering records of other species as a proxy; Phillips

et al., 2009) or on the ability to model the sampling process

separately, which requires having good predictors of sampling

effort and independence between those and the predictors of

species occurrence (Chakraborty et al., 2011; Fithian & Hastie,

2013; Warton et al., 2013; Fithian et al., 2014).

For PB SDMs, sampling bias is analogous to imperfect detec-

tion when detectability depends on environmental covariates. In

both cases the species is less likely to be detected in certain

environments, either because it is truly more difficult to detect

when those sites are surveyed (‘true’ detectability issue) or

because those sites are less likely to be visited (environmental

sampling bias). It is only when there is no sampling bias that PB

methods are able to estimate the relative likelihood of species

occupancy (column 3 in Fig. 1a); when there is environmental

sampling bias but it is positively correlated with occupancy, site

ranking is nevertheless maintained (column 2). Sampling bias is

not only an issue when sampling effort is correlated with

covariates determining species occurrence. Sampling effort that

varies with factors that are not correlated with species occur-

rence can still bias the estimation of the relative likelihood of

occurrence, as those factors can be incorrectly identified as rel-

evant predictors in the model.

G. Guillera-Arroita et al.
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In contrast to PB models, the effect of sampling bias on PA or

DET SDMs is very different and has less critical consequences, as

it does not introduce bias in the estimation (Phillips et al.,

2009). Instead, sampling bias implies reduced estimation preci-

sion for sites in the environmental space that are less intensively

sampled.

SDM OUTPUTS IN ECOLOGICAL,
BIOGEOGRAPHICAL AND
CONSERVATION APPLICATIONS

SDM outputs need to match the objectives of the applications

that they aim to inform. In Appendix S3 we review extensively

the information required from SDMs for ecological and con-

servation applications, organized into four tables that represent

the following domains: (1) management of invasive species, (2)

management of threatened species, (3) spatial planning, and

(4) ecological and biogeographical inference. For each applica-

tion, we specify how SDM outputs are used, describe the

potential consequences of using a biased estimation of occu-

pancy and discuss whether a relative likelihood or correct

ranking is a sufficient input. Readers can search for their appli-

cation in the first column of the tables, find the minimum level

of information content required and use Fig. 1 to determine

the circumstances in which each data type will produce a

suitable SDM output for that application. We also assess

whether particular applications actually require a binary input

(generated by applying a threshold to the SDM output) or

whether working with the continuous SDM output is more

appropriate.

In the following subsections, we explore five simulation-based

case studies that characterize common uses of SDMs in ecology,

biogeography and conservation (summarized in Table 1), and

use these to illustrate key points regarding SDM data needs. For

each case study we assess the consequences of using SDMs that

estimate probabilities or relative likelihoods, considering both

direct use of continuous SDM outputs and use after conversion

to binary maps. For the latter, we tested a set of commonly used

thresholds (Appendix S1; Liu et al., 2005): (1) the minimum

estimate corresponding to a training presence (‘MTP’); (2) the

10th percentile estimate for training presences (‘10TP’); (3) the

threshold that resulted in equal sensitivity and specificity

(‘SS = SP’); and (4) the threshold that maximized the sum of

sensitivity and specificity (‘max (SS + SP)’). For PB data, speci-

ficity cannot be defined in the usual way given that absence

records are not available, so we followed the practice in Maxent

that uses the background data instead, and is therefore related to

predicted area.

Case study 1: wildlife monitoring

The area (or number of sites) occupied by a species (sometimes

abbreviated AOO for ‘area of occupancy’) is the state variable of

interest in many large-scale monitoring programmes which aim

to track variation in AOO over time (MacKenzie et al., 2006, pp.

41–44). Both AOO and changes in AOO are important elements

of IUCN Red List assessments (criteria A, B2 and D2; IUCN,

2012). AOO can be estimated by summing the site occupancy

probabilities obtained with a SDM over the landscape of inter-

est. It is clear that this cannot be done based on relative likeli-

hoods (since by definition AOO is the prevalence multiplied by

the total area). Here we use a simulation study to show the extent

to which it is possible to track temporal changes in AOO by

fitting models that provide lower levels of information than

occupancy probabilities. We also explore whether converting the

output of SDMs into binary maps assists in estimating AOO.

We simulated a temporal decline in the AOO of a species

(representing the ‘true’ change) and the sampling of large PA

and PB datasets for three time steps, which, when analysed led to

estimated probabilities and relative likelihoods of occupancy,

respectively (details in Appendix S4). To estimate the change in

AOO, SDM estimates were summed over the landscape, either

directly as a continuous output or after applying the four thresh-

olds listed above to convert them to binary maps.

The simulations demonstrate that relative likelihoods pro-

duced by a PB-based SDM are not comparable across time:

prevalence is proportional to the declining AOO but cannot be

estimated, and thus the resulting estimates are clearly unable to

track declines in AOO (Fig. 2). PB data cannot determine

whether an apparent decrease in the number of detections for a

species through time reflects an actual reduction in AOO or

declining survey effort. Binary conversion of the SDM output

prior to calculation of AOO does not solve the problem of

working with relative likelihoods of occurrence, because a

binary categorization does not fix the fact that prevalence

cannot be estimated without absence data. Furthermore, binary

conversion is detrimental compared with using the actual prob-

abilities of occurrence when available. This is because a binary

categorization represents a coarse interpretation of species

occurrence probabilities and reduces the information content

compared with using the full range of values provided by the

SDM. In our simulations, detection was assumed to be perfect,

hence the PA-based SDM produced reliable estimates of prob-

abilities of occurrence. However, imperfect detection can cause

PA methods to miss trends or detect spurious ones. An excep-

tion to that rule occurs if detectability is constant across space

and time (a relatively strong assumption). Then, PA methods

estimate relative likelihoods of occupancy that track changes in

AOO.

Case study 2: invasive species priority lists

Biosecurity resources are limited, so it is common for govern-

ment agencies to prioritize exotic species for management inter-

vention. The potential distribution of an exotic species is a key

indicator of its ability to spread, and is therefore frequently

considered in this prioritization process. In Australia, for

example, weeds of national significance are in part determined

by examining the potential distribution of a range of candidate

species under current and future climates (Lizzio et al., 2009).

This listing process influences the allocation of potentially mil-

lions of dollars worth of biosecurity resources.

Matching distribution models to applications
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Here we show that estimates of the relative likelihood of occu-

pancy are not suitable for prioritizing species according to their

potential AOO. For this, we simulated a set of 25 species,

sampled their distributions and built SDMs based on PA and PB

datasets (details in Appendix S4). For each species, we computed

the sum of the SDM estimates across the whole landscape, using

the continuous output as well as the binary outputs obtained

after applying the thresholds.

In statistical terms, the sum of estimated occupancy probabil-

ities across the region is the expected value of the AOO, and

hence it is a good estimator for AOO, leading to the correct

prioritization of species (PA method; Fig. 3). However, if the

output of the SDM is a relative likelihood of species occupancy,

the AOO cannot be estimated, as we saw in case study 1. Cru-

cially, the quantities obtained are not comparable across species,

and hence species cannot be prioritized based on these data (PB

method; Fig. 3). Applying a binary conversion to the SDM

output does not solve the problem for the same reasons as

described above. In this case study, detection was assumed to be

perfect, hence the PA-based SDMs produced estimates of actual

probabilities. Imperfect detection can also lead to incorrect

prioritization when PA data are used, because even if

detectability is constant across space it is likely to be species

specific.

Case study 3: optimal surveillance of invasive species

SDMs can be used to inform invasive species surveillance. For

instance, Hauser & McCarthy (2009) proposed a spatial detec-

tion and treatment model, and identified the level of surveil-

lance that minimizes total expected costs while taking into

account ease of detection and control as well as the probability

of species occurrence at the site. This approach was subse-

quently used to design surveys for invasive orange hawkweed

Pilosella aurantiaca, in south-eastern Australia (Herbert et al.,

2013). The method considers the following scenario: a site is

surveyed and, if the species is detected, the site is managed for

eradication. If not detected, the species is assumed absent and

the site is not managed. However, the species could have been

present and not observed, in which case the lack of early man-

agement may lead to a wider infestation that ultimately incurs

higher management costs. There is thus a trade-off between the

Figure 2 Wildlife monitoring case study. The rows show the true and estimated area of occupancy (AOO, %) for a virtual species as a
function of time: row 1, true AOO; row 2, AOO derived from a presence–absence (PA) model; row 3, AOO derived from a
presence-background (PB) model. In column 1 the red horizontal lines report true AOO, and each bar summarizes the result of 20
simulations (10th to 90th percentiles), with colours representing how the species distribution model (SDM) output was used (black, no
threshold; blue, ‘SS = SP’ threshold; green, ‘max (SS + SP)’ threshold; see threshold definitions in the main text and similar results for other
thresholds in Appendix S4). Columns 2–4 show the estimated distributions for one of the simulations for the three time steps (t1, t2 and
t3), as well as the ‘true’ distribution model. PB SDMs are not able to track the species decline. Using thresholds does not solve the problem,
and is detrimental for estimation based on PA data.
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amount of resources spent on surveying and early management

on infested sites and the resources ultimately spent in delayed

management at sites where the species was present but

undetected.

For this case study, we sampled the distribution of a simulated

invasive species, built SDMs based on PA and PB datasets and

then applied the approach by Hauser & McCarthy (2009) to

determine the optimal level of surveillance without imposing

budget restrictions, using the SDM outputs as estimates of

species occurrence probabilities (details in Appendix S4). Only

when the SDM values used for the optimization represent actual

probabilities of occurrence (PA method) can the potential

savings from surveying be fully realized (Fig. 4; but see

Guillera-Arroita et al. (2014a) for cases where relative probabil-

ities may suffice). In our simulated example, applying the truly

optimal level of surveillance reduced costs by 26% compared

with a situation without surveillance and early management. In

contrast, if the level of surveillance was determined by wrongly

interpreting the output of a PB method as probabilities, total

costs increased by 22%.

Case study 4: estimation of species richness

SDMs can be combined to model biodiversity at the commu-

nity level following a ‘predict first, assemble later’ strategy

(Ferrier & Guisan, 2006), whereby separate SDMs for each

species are stacked using some form of aggregation. One

example of this approach is where SDMs are summed site-by-

site to derive predictions of species richness (i.e. the number of

species present at each site), which can then be used to explore

further ecological or biogeographical questions or to identify

biodiversity hotspots for conservation (e.g. Parviainen et al.,

2009).

The sum of species occupancy probabilities at a site is equal

to the expected number of species present, and hence is a good

estimator of species richness (Calabrese et al., 2014). One

would not expect richness to be reliably estimated if the indi-

vidual SDMs only estimate relative likelihoods of species

occurrence. Yet, a number of studies have applied this meth-

odology using PB SDMs (e.g. Pineda & Lobo, 2009;

Schmidt-Lebuhn et al., 2012). There are also claims in the lit-

erature that when calculating species richness it is best to

transform continuous SDM predictions into binary predic-

tions prior to summing them (e.g. Newbold et al., 2009;

Pineda & Lobo, 2009), or even that such transformation

is simply ‘inevitable’ (Trotta-Moreu & Lobo, 2010). We test

whether these seemingly counterintuitive assertions are justi-

fied in the simulations described below.

We simulated the distribution of a set of 100 species, sampled

them, fitted SDMs using PA and PB methods and then aggre-

gated the resulting SDMs to estimate species richness (details in

Appendix S4). Here we report the results of a scenario where

half of the species depend on one covariate and tend to have low

prevalence, while the second half depend on a different covariate

and tend to have high prevalence (results for other scenarios are

presented in Table S4.2 in Appendix S4).
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Figure 3 Invasive species prioritization case study. Estimated area of occupancy (AOO, %) for 25 virtual species as a function of their true
AOO, based on the output of presence–absence (PA) and presence-background (PB) species distribution models (SDMs; first and second
row, respectively). In the first column, the SDM output is used without a threshold. In the second and third columns the SDM output is
first converted to a binary output using a threshold (‘SS = SP’ or ‘max (SS + SP)’; see threshold definitions in the main text and similar
results for other thresholds in Appendix S4). The PB SDM does not prioritize species correctly. Binary conversion did not solve the
problem, and was detrimental for estimation based on PA data.
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Only when the stacked SDMs predict true probabilities is the

estimation of species richness unbiased (Fig. 5). Attempts to

estimate richness based on SDM outputs that only represent

relative likelihoods of species occupancy are arbitrarily biased

(in our example, richness is overestimated). Binary conversion

of SDM outputs does not solve the problems associated with

relative likelihoods and it is clearly detrimental when applied to

SDMs that estimate probabilities (Fig. 5), as recently shown

mathematically by Calabrese et al. (2014). Our simulated exam-

ples suggest that continuous (i.e. uncategorized) relative likeli-

hoods may broadly capture relative patterns of species richness

in some scenarios, even if they are unable to estimate absolute

numbers of species (i.e. actual and estimated richness corre-

lated). This finding is compatible with results presented in the

literature (e.g. Aranda & Lobo, 2011), although further research

is needed before establishing how widely this pattern applies in

real systems.

Case study 5: spatial prioritization

SDMs are frequently used to prioritize areas for conservation

actions such as reserve establishment or restoration. To date,

multiple methods and software tools have been applied to

spatial conservation planning, including sophisticated

approaches based on algorithms that can solve highly complex

spatial problems (Moilanen et al., 2009). The two most fre-

quently used modes of planning are: (1) the minimum set

approach (Cocks & Baird, 1989), in which areas are selected in

order to meet species-specific (or feature-specific) targets while

minimizing the cost of the solution, and (2) the maximum

coverage/utility approach (Hof & Raphael, 1993; Camm et al.,

1996), in which biodiversity benefits are maximized within

given budgetary or area constraints. Here we explore the effect of

SDM output scaling and binary conversion on reserve selection

when using a target-based minimum set approach. We use a
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Figure 4 Optimal surveillance of invasive species case study. Rows correspond to three scenarios of species occurrence information used to
determine the optimal amount of surveillance: row 1, ‘true’ occurrence probabilities; row 2, species distribution model (SDM) obtained
from presence-absence (PA) data; row 3, SDM obtained from presence-background (PB) data. The first column displays the SDM
(true/estimated occurrence probability or estimated likelihood of occurrence; note the difference in scale). The second column displays the
optimal survey length at each site, determined by taking the maps in the first row as true occurrence probabilities. The third column
displays the ratio of total costs (survey + management) between the case with surveys as determined above and a case with no surveys.
Blue indicates that surveys lead to total cost savings, while red indicates that surveying increases total costs. Applying the optimal level of
surveillance in this example would reduce total costs by 26%. Applying the level of surveillance obtained by wrongly interpreting the output
of the PB SDM as a probability would lead to an increase in total costs (22%).
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widely adopted planning tool, Marxan (Ball et al. 2009), as an

example but the conclusions derived are equally valid for other

tools within this group. In Appendix S4 we present the analo-

gous analysis using Zonation (Moilanen et al., 2012) as an

example of maximum coverage/utility approaches.

We used SDMs based on real PA data for seven species from

the Lower Hunter region in Australia (Wintle et al., 2005a),

rescaled them to mimic PB methods that produce estimates of

relative likelihoods (scaling between 0.3 and 0.9) and applied

the thresholds above to obtain binary SDMs (details in Appen-

dix S4). For the Marxan analysis, the amount of each conser-

vation feature (species) contained in each cell was set to the

prediction of the corresponding SDM. Two types of target

were assessed: ‘proportional’ (conserve a set proportion of the

area that each species occupies) and ‘absolute’ (conserve a set

area occupied by each species). The absolute areas were chosen

by multiplying the proportional targets by the total area occu-

pied by each species according to the original PA-based SDMs.

The planning solutions produced after applying scaling and

binary conversion to the SDMs were compared with results

obtained using the original SDMs, in terms of the number of

‘true’ species distributions protected in each solution (the ‘true’

distributions were simulated based on the original SDM

probabilities).

We found that planning solutions based on relative likeli-

hoods are comparable to those based on true occurrence prob-

abilities provided proportional targets are used (Fig. 6b).

However, the minimum set approach over- or under-shoots

true absolute targets when based on SDMs that estimate

relative likelihoods (Fig. 6a). When SDMs underestimate preva-

lence (scaling < 1), targets are met but solutions are more costly

(e.g. the cost of achieving the targets was double in Fig. 6a when

prevalence was underestimated; open circles). Conversely, if

SDMs overestimate prevalence, the algorithm interprets that it is

conserving more than it actually does, and conservation targets

are missed. Binary conversion of SDM outputs leads to a reserve

system that fails to meet true targets and/or is more costly, even

if relative targets are used (Fig. 6c, d): the information loss

ultimately results in expending excessive resources on some

species while under-representing others. Targets and achieved

levels of conservation disagree more when absolute targets are

used.

Although we have shown that the use of relative

likelihoods does not affect the planning solution when

targets (or algorithms) are based on proportions of species

distributions, it is important to realize that the true area occu-

pied by species in reserves will remain unknown. This limita-

tion may have implications in ecological, biogeographical

and conservation applications. For example, one will not be

able to judge whether the occupied area within a reserve

is large enough to represent a viable population of the

species.
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Figure 5 Species richness case study. Plots display estimated versus true richness for 500 sites, based on stacking presence–absence (PA)
and presence-background (PB) species distribution models (SDMs; first and second row, respectively). A total of 100 species were
simulated. In the first column, estimated richness is obtained as the sum of the continuous output of the SDMs, without a threshold. In the
second and third columns the SDM output is first converted to a binary output using a threshold (‘SS = SP’ or ‘max (SS + SP)’; see
threshold definitions in the main text and similar results for other thresholds in Appendix S4). The sum of continuous outputs of PA SDMs
provides a good estimation of species richness; PB SDMs cannot estimate richness well given that their output does not represent a
probability of presence. Applying thresholds does not solve the problem and is detrimental when using PA data. Despite not being able to
estimate absolute richness, in this example PB SDMs provide a relatively robust ranking of sites in terms of richness (although worse than
PA SDMs).
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DISCUSSION

We have shown how the type of survey data, sampling bias and

imperfect detection interact to determine the quantity that is

ultimately estimated by a SDM (Fig. 1), and the implications of

reducing SDM outputs to a binary categorization. Each of these

issues have been discussed in the literature (e.g. Phillips et al.,

2009; Phillips & Elith, 2013; Calabrese et al., 2014;

Lahoz-Monfort et al., 2014), but have generally been addressed

as separate problems, with little or no evaluation of their impli-

cations for particular applications. We have integrated these

issues into a single framework to aid interpretation and explicit

consideration of the implications for the most common appli-

cations of SDMs. Our simulations demonstrate that these issues

really matter and that misguided or inefficient management and

inference may result if they are ignored.

SDMs, data and decision-theory

It has recently been advocated that the modelling of species

distributions should be carried out within a structured and

transparent decision-making framework (Guisan et al., 2013).

Formulating a clear objective is the starting point for such a

process. To ensure that a SDM is ultimately fit for its purpose

one must first ask ‘what is my SDM to be used for?’. Here we

argue that a critical consideration is whether the type of infor-

mation demanded by the application in question is available or

could be obtained. In practice, this requires evaluation of

whether the SDM output needs to provide estimates of actual

occupancy probabilities or whether relative likelihoods, or the

ranking of sites, will suffice. Our assessment shows that while

learning about the relative likelihood of species occupancy in

different sites is sufficient for some applications (e.g. spatial

prioritization when targets are expressed as proportion of dis-

tributions, Fig. 6; or cost-sharing agreements about invasive

species management, Appendix S3), for many other applications

information about the actual probability that a site contains a

species is crucial (e.g. species prioritization according to the area

occupied, Fig. 6; or estimation of species richness, Fig. 5). One

should also evaluate whether the data (existing or to be col-

lected) can be assumed to be free of considerable biases or,

otherwise, whether the type of data allows unbiased estimation

when used in conjunction with appropriate modelling methods.

Thinking about the type of output that a SDM is expected to

provide for a given application is also important from the point

of view of model evaluation, as it directly relates to the metrics

that should be used to assess its performance (Lawson et al.,

2014).

Where an application appears to require only knowledge

about relative likelihoods, it is essential to consider carefully

whether SDM predictions are indeed comparable within that

specific context. For instance, assuming that detectability and

sampling effort do not vary spatially, predictions from a PB

model represent relative likelihoods and these are comparable
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Figure 6 Spatial prioritization case study.
Scatterplots represent the proportion of
occupied area selected by Marxan (y-axis)
for the seven considered species with
respect to the requested target (x-axis) in
different scenarios. In all panels the same
targets are applied, although they are
expressed in two ways: as absolute areas
(left panels) or as a proportion of area
(right panels). Closed circles represent
solutions produced for the original SDM
probabilities, open circles for scaled
probabilities, and other symbols represent
solutions where thresholds were applied to
the latter to create binary SDM outputs:
‘MTP’ ( ), ‘10% TP’ (◇), ‘SS = SP’ (△),
‘max (SS + SP)’ (▽) (see threshold
definitions in the main text). The values
displayed in the legend of each plot
represent the total cost for each
prioritization solution.
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across space. However, comparisons across time or between

species are not valid because prevalence will differ across SDMs

and cannot be estimated from PB data: the predicted SDM

values in a given location are relative to other locations modelled

but are not comparable across models fitted for different species

or over different time periods. Thus, even if relative likelihood

predictions for two species happen to have the same value at a

given location, it does not follow that both species have the same

probability of occurrence on those locations. The same reason-

ing applies to temporal comparisons. In general, this rules out

the use of SDMs fitted to PB data in monitoring temporal trends

in species AOO (Fig. 2) or in the prioritization of a set of species

according to their AOOs (Fig. 3). Trends in AOO can be

explored with PB data when projecting a SDM to changing con-

ditions but not when separate models are fitted to capture

changing relationships with the predictors.

Binary conversion of SDM predictions

Our case studies show how the conversion of SDM predictions

into discrete categories diminishes the value of SDMs for a range

of applications such as spatial prioritization (Fig. 6), species

richness estimation (Fig. 5) or applications that require estimat-

ing species AOO (Figs. 2 & 3). Our results support other recent

studies that argue against the discretization of SDM outputs for

specific applications (e.g. Calabrese et al., 2014; Lawson et al.,

2014). In short, the continuous outputs of SDMs provide richer

information than discrete representations, and therefore

the discretization of SDM outputs is detrimental in most

applications.

The commonly held belief that applications require binary

SDM outputs may stem partly from unrealistic expectations

about what a SDM can, or should, provide. In an ideal world, a

SDM would provide perfect discrimination between sites at

which species are present and absent, leading to a binary map of

true occurrence. However, data limitations (a sample of obser-

vations) and the inherently stochastic nature of site occupancy

(i.e. the fact that reality tends to be too complex to be categori-

cally described by measurable covariates in a statistical model)

mean that SDMs can only be expected to provide probabilistic

predictions of species occurrence. Transforming such probabil-

istic outputs into binary maps using a threshold does not

provide an estimate of site occupancy that is closer to the true

presences and absences; on the contrary, discretization degrades

the information available in SDM predictions (Fig. S2.2 in

Appendix S2). Some studies have used binary conversion in an

attempt to get around the problem of not being able to estimate

prevalence in PB SDMs (e.g. Pineda & Lobo, 2009; Liu et al.,

2013). Our simulations confirm that simplifying PB-based SDM

outputs into binary categorizations does not solve this problem

(Figs 2, 3, 5 & 6).

Our review of the applications of SDMs indicates that, despite

being a relatively widespread practice, SDM outputs should

rarely be converted into binary maps (Appendix S3). In this

regard, we again emphasize the need to use SDMs within a

structured decision-making framework. Specifying exactly how

SDM outputs are to be used for particular applications helps to

clarify whether binary conversion is actually necessary or ben-

eficial, and which threshold is most appropriate, if any. For

instance, a management body may decide to identify ‘critical

habitat’ for a species to grant relevant sites special protection. In

this case, the objective involves classifying the habitat into two

categories (protected or not), hence binary conversion is fully

justified by the objective. Yet not all conversions would be

equally acceptable: the objective should be articulated to provide

the rules to select the appropriate threshold. For example, if the

aim were to protect 90% of a species’ distribution, the threshold

that achieved a sensitivity of 0.9 should be used. However, if the

aim were instead to protect the n best sites for the species dic-

tated by the available budget, a different threshold would be

applied.

Future prospects and recent developments

Due to the availability of data PB methods are frequently used

despite their limitations. Future efforts should be directed

towards the collection of more informative survey data, which

will lead to SDMs that can support a wider range of applications

in ecology, biogeography and conservation. A first step is to

ensure that non-detections are recorded. Wider incorporation of

non-detections into databases that bring together observations

from different sources will render them much more useful, as

this addresses the problem of sampling bias (Feeley & Silman,

2011) and allows the estimation of species prevalence. A greater

appreciation of the limitations of PB data should also lead to

careful investigation of existing datasets, to assess whether

absence data can actually be extracted from raw survey data.

Where PB data do not deliver the information required, they

might still be usefully integrated with limited PA data to esti-

mate distributions better than simply using PA data alone

(Dorazio, 2014; Fithian et al., 2014).

Collecting data in ways that allow one to deal with imperfect

detection should also be an important component in designing

future sampling protocols, while available data sources should

be carefully examined to evaluate whether they allow this (e.g.

Kéry et al., 2010). Statistical methods that explicitly model the

observation process (i.e. state-space models) are valuable tools

for analysing ecological data (King, 2014; Guillera-Arroita et al.,

2014b). Apart from the development of models of species dis-

tributions that account for possible false absence records, recent

statistical advances include extensions to model range dynamics

and multiple occupancy states (Bailey et al., 2014). Methods

have also been developed to deal with false positive records

which, although less prevalent, can be relevant for some types of

surveys (Miller et al., 2011). In summary, to reliably infer the

distribution of a species, steps need to be taken during survey

design, data collection and analysis to minimize the effects of the

sampling process.

CONCLUSION

Many issues need to be considered when attempting to build

useful ecological models. As we have shown, a fundamental
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question in the context of SDMs is whether the type and quality

of data available are suitable for producing the information

required for a given application. Not all data types or SDM

approaches are valid for all applications in ecology, biogeogra-

phy and conservation, and using inadequate SDM outputs may

lead to misguided decisions and suboptimal use of resources.

For some applications, learning about which variables are good

predictors of a species’ distribution is sufficient; for many

others, however, knowledge about the prevalence of the species

is required. Our results demonstrate that binary conversion of

SDM outputs does not solve this problem, and should only be

carried out when it is clearly justified by the application’s objec-

tive. Framing the use of SDMs within a structured decision-

making context helps to ensure that the resulting model is fit for

its intended purpose.
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